
p. 1 of 37

Authors

The Design and Evaluation of"CAPTools" --

A Computer Aided Parallelization Tool-kit

Jerry Yan, Michael Frumkin, Michelle Hribar, Haoqiang Jin, and Abdul Waheed

MS T27A-1, NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

Steve Johnson, Mark Cross. Emyr Evans, Constantinos Ierotheou, and Pete Leggett

Parallel Processing Research Group,

University of Greenwich,

London SE18 6PF, UK

All correspondences should be addressed to Dr. Jerry Yan, 2 Pentland Gardens, London, SW18,

2AN (I am currently on sabbatical in London). E-mail: yan@nas.nasa.gov, Phone: +44-181-331-

8588; FAX: +44-171-371-0021

p. 2 of 37

The Design and Evaluation of"CAPTools" --

A Computer Aided Parallelization Tool-kit

Jerry Yan, Michael Frunhkin, Michelle Hri-

bar, Haoqiang Jin, and Abdul Waheed

MS T27A-1, NASA Ames Research Center

Moffett Field, CA 94035-1000, USA

Steve Johnson, Mark Cross, Emyr Evans,

Constantinos Ierotheou, and Pete Leggett

Parallel Processing Research Group,

University of Greenwich,

London SE18 6PF, UK

Key Words. Automatic Parallelization, Software Tools, Performance Evaluation

Abstract. Writing applications for high performance computers is a challenging task. Although

writing code by hand still offers the best performance, it is extremely costly and often not very

portable. The Computer Aided Parallelization Tools (CAPTools) are a toolkit designed to help

automate the mapping of sequential FORTRAN scientific applications onto multiprocessors.

CAPTools consists of the following major components: an inter-procedural dependence analysis

module that incorporates user knowledge; a "self-propagating" data partitioning module driven

via user guidance; an execution control mask generation and optimization module for the user to

fine tune parallelprocessing of individual partitions; a program transformation/restructuring fa-

cility for source code clean up and optimization; a set of browsers through which the user inter-

acts with CAPTools at each stage of the parallelization process; and a code generator supporting

multiple programming paradigms on various multiprocessors. Besides describing the rationale

behind the architecture of CAPTools, the parallelization process is illustrated via case studies in-

volving structured and unstructured meshes. The programming process and the performance of

the generated parallel programs are compared against other programming alternatives based on

the NAS Parallel Benchmarks, ARC3D and other scientific applications. Based on these results, a

discussion on the feasibility of constructing architectural independent parallel applications is pre-

sented

I. Introduction

I.I. Motivation

Over the past decade, high performance computers based on commodity microprocessors have

been introduced in rapid succession from at least seven vendors/families. All of them supported

some form of message passing libraries, while the latest players in the market also supported

p.3of37

someform of distributedsharememoryremoteaccessprimitivesI. Manyusershavealsocon-

structed computing clusters using workstations and PC' s. They re-wrote their applications using

message-passing libraries (such as MPI and PVM) and reported very good price/performance

numbers.

Nevertheless, these advances have created a new class of problems involving multiple code ver-

sions. If a computer center were to procure only a quarter of these machines over the past ten

years, each machine would last no more than three years on average. In fact, a few such architec-

tures would often coexist at a site simultaneously. The average user would have to struggle with

two issues every time a nev, machine is introduced:

1. "Should I port my application to the new machine?" The user really has no choice but to

do so because the old machines will be decommissioned. Furthermore, there is some pres-

sure to attempt to fully utilize the computing performance potential of these new ma-

chines.

2. "How many versions of the source code should now be maintained?" Even though this

depends on the user base of the application, the user may still have to maintain three code

versions supporting: message passing standards, shared memory directives as well as vec-

tor processing.

Unlike scientists in the research laboratories, users in the commercial sector (e.g., aircraft indus-

try) have remained dependent on traditional vector architectures (e.g., Cray C90) because of two

reasons:

1. They are unwilling to abandon their trusted applications and develop new ones for the

new machines. These "legacy" applications have proven their worthiness well over many

years on specific architectures. The amount of time and investment required to validate

complete new applications is prohibitive.

2. They are unwilling to port (or rewrite) these trusted "legacy" applications onto the new

machines. Porting large applications is very expensive and time consuming. Furthermore,

there is no guarantee that their investment can be protected because of the short life time

these multiprocessors may exhibit.

Even more recently, a large effort has been expended in the development of underlying infrastruc-

ture to support the creation of wide area networks of computers, including large-scale machines,

to enable user access to them as a single computing resource. Projects such as NPACI [1], and

Examples included: Intel's IPSC/860, Delta and Paragon: all supported the NX message-passing library; TMC's
CM-2, and CM-5 (which also operated in MIMD mode supporting an active messaging library called CMMD);
IBM's SP1 and SP2: both support MPI and (IBM's propriety) MPL libraries; Cray's T3D and T3E support both
MPI as well as remote memory access; and SGI Origin 2000 and Sun's Enterprise and HPC2 servers supports
both MPI as well as share memory messaging.

p. 4 of 37

PACI [2] have aimed to provide users transparent access to such a "computational grid", which

is essentially a distributed, heterogeneous collection of parallel computers. Such grids pose many

new requirements with respect to programming models, compilation strategies and execution en-

vironments. With increasing application complexity and problem size, scientists may no longer

be able to afford to continue porting efforts every time a new machine is launched. Furthermore,

with the anticipation of the decommissioning of old machines, as well as demands for shorter exe-

cution time, alternative approaches to porting by hand must be investigated. In other words, the

production of efficient "architecture independent" parallel programs has become the next big

challenge in high performance computing.

1.2. Outline of the Paper

In Section 2, we first discuss the alternative approaches to parallelizing and maintaining legacy

applications. These include programming by hand, relying on parallelizing compilers supplied by

the vendor, annotate/rewrite application using data- and task- parallel directives/languages, as well

as rewriting application codes using semi-custom building blocks (or libraries). Given the state of

the art, an interactive toolkit for parallelization seems to be most fitting because the user can

supply his knowledge and influence the parallelization strategy while leaving the mundane error-

prone program transformation process to the toolkit. The design philosophy and architecture of

CAPTools are presented in Section 3. Implementation strategies that enable high performance

code optimization is then presented. These include: use of well-know techniques to handle com-

putations involving structured- and unstructured-meshes, techniques for dependence analysis and

data partitioning, parallel execution control determination, as well as communication identifica-

tion, migration and merger. The usage of CAPTools as well as the performance of the generated

code is presented and evaluated in Section 4. Results obtained from a detailed study based on

NAS Parallel Benchmarks indicate that CAPTools generated code that performs within 10% of

hand-written code. Finally. Section 0 presents a conclusion and a brief discussion of future work.

2. A Spectrum of Allernatives for Legacy Code Modernization

This section presents a state-of-the-art survey for these approaches and evaluates their suitabil-

ity for parallelizing legacy applications and their long-term maintenance.

2.1. Rewriting Applications by Hand

Although writing parallel programs by hand gives the best performance, it also requires the most

significant amount of effort. When a user rewrites a sequential program using message passing

(or remote memory access) primitives, they have complete control over data distribution and

parallelization strategies. Given sufficient feedback, the user can tune the program by improving

load balancing, minimizing data redistribution, and overlapping communication with computation

to minimize processor idle time. The major disadvantage with this approach is the immense re-

p. 5 of 37

sponsibility of ensuring the correctness of the implementation that comes from the user's explicit

management of, for example, domain decomposition. This use of Single-Program-Multiple-Data

(SPMD) paradigm requires data to be distributed in a consistent fashion across the multiproces-

sots. Furthermore, cormnunication must occur whenever a processor modifies a value required

by another processor. This update schedule must be performed in the right order and with

maximum efficiency to ensm'e correctness and performance. Message-passing programs, there-

fore, cannot be developed gradually by piecemeal conversion of a serial code. The entire program

must be converted all at once, putting message-passing at a distinct disadvantage compared to the

shared-memory paradigm, which at least, gives the appearance that it allows gradual paralleliza-

tion via insertion of parallelizing directives. Finally, as outlined in the Section 1.1, the anticipa-

tion of repeating this expensive, tedious, time consuming, error prone process every few years

makes this approach very unattractive.

2.2, Parallelizing C_mpilers with Directives

Some users may opt to rely on parallelizing compilers provided from the vendor. They antici-

pate that the insertion of a few "directives" together with a small amount of re-writing would en-

able their sequential progrmn to perform well on these new machines 2. The success of this ap-

proach depends on three important factors:

1. TIIE LEVELOF SOPHISFICATIONOF THE COMPILER. The user is completely dependent on the

compiler's ability to discover parallelism, distribute data and accurately detect data de-

pendencies. The performance obtained depends on many factors, including thoroughness

of the interprocedural analysis as well as the ability to consider user knowledge about, for

example, application input parameters.

2. THE STRATEGIC PLACEMENT OF PARALLELIZATION DIRECTIVES. These directives take the

form of structured comments, they are ignored by non-parallelizing compilers. When no

directives are given, some parallelization or vectorization may still occur if the source code

is simple enough. The user may supply directives either to override data dependencies the

compiler failed to disprove or to enforce certain data placement strategies. Either way, it

requires a level of expertise not commonly possessed by application scientists.

3. USER'S ABILITY TO TUNE THE APPLICATION. Parallel code execution may not necessarily

improve performance. For example, loops can be interchanged to increase the grain-size of

individual parallel tasks to reduce tasking and communication overhead. The user must be

prepared to iteratively inspect performance data and modify the program accordingly.

2 Vectorization and multi-tasking compiler directives have been defined and supplied by vendors such as Cray Re-
search [3], Advanced Parallel Research (FORGE) [4], Kuck and Associates (KAP/Pro Toolset) [5] and, Silicon
Graphics (MIPSpro Power FoJ1ran (X3H5 compliant) and C (pragma-based directives)) [6].

p. 6 of 37

Furthermore, simple directives, such as $ DOACRO S S, do not allow parallelism to be conveniently

specified across loop nests. For example, one of the most useful control structures in parallel

programming, the pipeline, cannot be expressed without making the domain decomposition ex-

plicit. This, compounded with a lack of control over data placement, may lead to severe per-

formance limitations. Finally, the use of parallelizing compilers suffers the same constraints as

vectorizing compilers in that it is only applicable on the multiprocessor for which the compiler

was designed. Nevertheless, the development of standards (such as OpenMP [7]) cannot be

simply overlooked. It offers a level of abstraction that may survive architectural evolution as

well as a goal towards which compiler writers may work.

2.3. Data and Task Parallel Languages

A third option involves the annotation of a sequential program using data distribution directives

offered in HPF [8] and related projects 3. While the standardization of HPF implies portability,

its performance as well as its applicability over a wide range of scientific applications is still very

much in question. Users have reported that HPF programs run at least 2 times slower than their

message passing counterparts (even on one processor) [17]. Possible explanations include book-

keeping overheads as well as the lack of control for communication granularity [18]. Delivering a

portable but slow parallel program defeats the purpose of high performance computing. Al-

though HPF is simple and elegant, it is also limited in its ability to express parallelism. The pro-

posal of a follow-on standard, HPF-2, will cater for better handling of indexed arrays and task

parallelism. Unfortunately, this presents an even more daunting task before the compiler writers.

In the final analysis, inserting data partitioning directives manually in a large and complex appli-

cation is not straightforward. Until computer aided analysis [19, 20] could provide some guid-

ance in this process, modernizing legacy codes via rewrite using HPF is not a viable option even

if HPF performance were reasonable.

Fx [21] and Fortran M [2211 are two of the few 4 FORTRAN-based task parallel languages aimed

at supporting multi-disciplinary applications. Disjoint tasks may execute concurrently and

communicate 5. There is no support for global (shared) data types within the tasks other than in

the data-parallel sense. Just as in the 'bare' message-passing environment, the user is responsible

for interpreting the meaning of arrays owned by the individual processors.

In summary, parallelizing legacy applications using data- or task-based parallel languages implies

a major re-coding effort. Research is still being carried out today to produce a language standard

3 HPC++ [9], Vienna Fortran [10], C*[1 !], Annai [12], CM Fortran [13], PC++/Sage++ [14], Fortran D [15], and

Mentat [16].

4Most of the proposed are not FORTRAN-based. These include Shared Data Abstractions (SDA's) [23], Sisal

[24], and Split C [25].

5 input and output mapping directives in Fx; channels and ports in Fortran M

p. 7 of 37

that is both flexible in its ability to express parallelism and at the same time, allows efficient

compilation to take place so as to generate high performance programs.

2.4. Using Semi-Custom Building Blocks (or Libraries)

Ideally speaking, the user should not be forced to choose between flexible task parallelism (with

private, non-shared data types) and the convenience of using shared data types in data languages.

Parallel libraries accomplish this encapsulation by supporting atomic tasks on globally defined,

shared data types. The implementation of the library can be tailored to individual multiprocessor

architecture and be made hidden from the user. This offers a degree of portability as the library

writers are responsible for staying on top of evolving machine architecture. Nevertheless, opting

for libraries represents a compromise, since no library can be completely general-purpose. For

example, ScaLAPACK [26], a distributed-memory version of LAPACK, only supports those

problems that can be cast as numerical linear-algebra problems. Unfortunately, numerical linear

algebra problems are often embedded in larger applications. For instance, a finite-element code

may generate the stiffness matrix using a three-dimensional (3-D) block decomposition while the

resulting equation can only be solved in ScaLAPACK using a two-dimensional (2-D) decomposi-

tion. Remapping in this case will require a costly global exchange operation. Structured-grid ap-

plications that do not construct system matrices explicitly will not benefit from ScaLAPACK.

Many special-purpose parallel packages have also been developed. PETSc [27], for example,

offers a set of functions for manipulating 6 high level distributed data types, and a collection of

linear and nonlinear equation solvers. However, several data partitioning strategies and remote

access mechanisms 7 required in complex CFD production codes are not supported.

In summary, parallel libraries derive their utility from execution efficiency, combined with their

ease of use. While customization improves user convenience, it sacrifices generality and expand-

ability for efficiency and simplicity. In principle, some legacy codes may be re-written using

parallel libraries. The amount of rewriting required and the performance of the resultant code is

yet to be determined. A detailed survey of the state-of-the-art developments in parallel library

projects can be found in [28].

6 Distributed data types are crealed collectively, but may be manipulated collectively as well as individually. One-,
two- and three-dimensional distributed arrays are used to support structured-grid computations. Provisions are
made for overlap zones (ghost points) that can act as buffers for copies of data elements on geometrically neighbor-
ing processors. With the proper use of the assembly routines, it is possible, in principle, to program pipeline
control structures explicitly, which has the advantage that the grouping factor is under the control of the user.

7PETSc only allows block-block distribution for its vectors and distributed arrays. There is no support for more
advanced domain decompositions, such as multi-partitioning or dynamic decompositions, such as those required
by transpose-based parallel algorithms. There is also no support for non-neighbor communications.

p. 8 of 37

2.5. Towards Computer Aided Parallelization Tools

Table 1 presents a concise comparison of the aforementioned approaches available for parallel

programmers. Basically, message-passing codes produced by hand exhibit the highest perform-

ance because the user can utilize their knowledge about the code to formulate a suitable paralleli-

zation strategy and tailor the implementation to the architecture. The use of libraries as well as

data- and task- parallel languages reduces the user's effort by shifting the machine-dependent im-

plementation details to compiler writers and library builders. Unfortunately, applications which

do not fit into pre-defined computation models and templates offered in the language/library ei-

ther cannot be implemented or must execute at a reduced level of performance. If portability

were not an issue, machine-specific parallelizing compilers, combined with detailed profiling and

user tuning produces acceptable performance for small codes. However, the need to limit com-

pile time reduces the thoroughness in which inter-procedural dependence analysis could be ap-

plied, thus affecting the quality and granularity of the parallel code produced for complex appli-

cations. In light of these concerns, interactive parallelization tool-kits should be the most prom-

ising approach to be investigated to assist the production of architecture-independent codes.

Table 1. A Comparison of Various Approaches Available for

Development and Maintenance of Parallel Applications.

Process

Rewritten

by hand

ParaUelizing

compilers

Data and

task parallel

language

Parallel li-

braries

Time/Effort

Extensive code revi-

sion required; error-

prone

Minimal code modifi-

cation; directives in-

serted as needed; tun-

ing could be time con-
suming

Annotation required;

need code restructuring

to match language's

programming para-

digm

Selective replacement
of code sections with

library calls; restruc-

turing may be required

to fit library structure

Performance

Excellent when

implementation
is tailored to ma-

chine

Completely de-

pendent on com-

piler

Compiler per-
formance still in

question to-date

Good when li-

brary is tailored
to machine

Portability

Dependent on port-

ability of standards

(e.g. MPI, PVM);

tuning required

Dependent on port-

ability of standards
(e.g. OpenMP); not

portable to network of
workstations to-date;

Dependent on port-

ability of standards

(e.g. HPF)

Dependent on the
machines to which the

library has been

ported.

Applicability/

Limitations

Applicable to any
code

Performs well for

codes with simple
structure and loop-

level parallelism

Does not handle

unstructured meshes

and computational

pipelines efficiently

Applicable to spe-
cific class of codes

for which the library

has been designed.

An interactive parallelization tool-kit provides a set of software tools to assist in the analysis,

browsing, editing, and transformation of a serial source code to produce a parallel program. The

p. 9 of 37

user operates at a higher level of abstraction, leaving the tool-kit to perform the mundane, error-

prone operations required to realize a particular parallelization strategy specified by the user.

Two major toolkit projects have been undertaken at Rice University and the University of Vi-

enna to support data parallel FORTRAN program. The D editor [29] (derived from ParaScope

[30]) is a browser that is intended to help users to develop Fortran D programs by providing in-

formation at the source level. The latest version of the editor incorporates performance data

gathered by Pablo [31] to guide the user in the parallelization process. The Vienna FORTRAN

Compilation System (VFCS) [32] provides a comprehensive toolset to assist the user to tune the

performance of Vienna FORTRAN programs. A follow-on effort, HPF+ [33], is being built and

is specifically targeted to h_mdle computations involving unstructured meshes. Unfortunately

these toolkits provide no assistance for the conversion from sequential to data-parallel FOR-

TRAN.

A parallelization package capable of starting from sequential source code is Forge Explorer [4].

The user participates in a s_ep-by-step dialogue to initiate data dependency analysis, insertion of

the proper control structures and message passing calls, to generate the final parallel program.

While Forge Explorer can recognize recurrences that can be resolved using computational pipe-

lines, it is limited in its ability to detect complex interprocedural dependencies and properly con-

trol the granularity of the parallel tasks.

Other efforts being carried out in the universities, such as Stanford's SUIF Explorer [34] (derived

from SUIF [35]), Illinois's Polaris [36], and Rice's dHPF [37] can not yet handle large industrial-

based codes. Based on out experience at NASA Ames Research Center, the only effort that can

parallel large sequential codes is CAPTools, developed at the University of Greenwich.

3. The Design of Computer Aided Parallelization Tools

3.1. Design Criteria

Throughout the development of CAPTools, a number of vital criteria were specified to ensure

that industrial and scientific applications can be effectively parallelized onto a wide range of par-

allel architectures. These criteria are:

• handle real world FoJ_ran application codes regardless of their perceived "quality";

• no allowance for perlormance limitations of the generated parallel code due to automation;

• generate recognizable code following well-understood parallelization techniques; and

• generate portable code for as wide range of parallel systems as is feasible.

Each of these criteria has a number of implications to the design and implementation of CAP-

Tools. The requirement to handle real world applications without restrictions on FORTRAN

p. 10of 37

standardss forces all stages of the parallelization process to cater for commonly used code fea-

tures (such as inter-procedural dimension mapping of arrays). Being able to handle these coding

features allows the vast catalogue of legacy applications to be parallelized. Additionally, and

equally as important, it allows the users to continue coding without regard to later parallelization,

so that they may concentrate on the scientific field in which they specialize. This is crucial since

many of these application programmers only employ serial programming as a tool and have no

interest in further diluting their effort by considering parallelization. Forcing them to "think par-

allel" may also not be desirable since it may not be practical to acquire the expertise required to

produce efficient, scalable parallel code. To ensure the success of parallelization tools, it is nec-

essary to embed the "expertise" in parallelizing application codes within them. This will also

satisfy the criteria of not suffering any performance loss due to automation. This approach is

only possible since the tools are designed to follow the recognized "best manual practice" that

has already been demonstrated by many groups [38-44]. The development of the parallelization

tools then becomes a process of abstracting and automating the manual parallelization process

into a series of easily understood stages. These stages can then be used for user interaction to

allow monitoring and some control of the parallelization process, as well as enabling the system

to explain its decisions to the user in as understandable way as possible. As more application

codes are encountered, the expertise in manual parallelization that is required to overcome previ-

ously unforeseen circumstances can be embedded within the tools, thereby increasing their

power.

The use of well understood parallelization techniques coupled with minimal changes to the origi-

nal source code during paraLlelization enable the recognition criteria to be achieved. The paralleli-

zation process can then be made to consist of a few straightforward transformations only. These

include the addition of communications, the adjustment of loop limits and the addition of execu-

tion control masks where necessary, allowing the remainder of the code to be left unaltered. Rec-

ognition of the generated code is obviously essential if meaningful user interaction is to be main-

tained throughout the parallelization process. It is also vital if further manual tuning of the gener-

ated code is required and allows maintenance of the parallel code.

Finally, portability is achieved by generating code that uses simple generic communication calls

to the CAPTools library CAPLib [45]. The porting of a parallel code to a new system then re-

quires only that CAPLib has been ported onto that system, allowing recompilation to be suffi-

cient. Since CAPLib includes generic MPI and PVM versions, this process is often straightfor-

ward. It also allows for the use of efficient lower-level communication API's such as the Shmem

library on the Cray T3D and T3E systems without changing the application code.

g e.g., Fortran 77 or Fortran 90, including legacy codes that may have originated in Fortran IV etc.

p.I1 of37

During thedevelopmentof CAPTools,anumberof otherfeatureswereidentifiedasbeingessen-
tial anddesirable.Thesecameasaresultof observationsmadewhileusingthetools for real

worldapplicationcodeswhere,for example,thegeneratedparallelcodedid notattainthehigh
qualityof theequivalentm_muallycreatedparallelcode. Thesefeaturesspecificallysupport:

• intensivecomputationrequiredin dependenceanalysisandothersymbolicalgebraproc-

essing;

• exploitationof usersuppliedinformation,in theform of simpleconstraintson thevaluesof
the input variablesof theapplicationcode,in all stagesof theparallelization;

• presentationof clearandconcisequestions,typically relatingto inputvariablesof theap-
plicationcode,to elicit essentialinformationfrom theuser;and

• browsersfor eachstageof theparallelizationprocessto allowuserinspectionandto pro-

videexplanationof whydecisionsweremade.

Thesefeaturesaim to provideasimpleinterfacebetweentheuserandthetoolsenablingtheex-

ploitation of userknowledgein termsthatrelateto their application.Theemphasisonaccurate
dependenceanalysisalleviatestheuserfrom theneedto prescribeparallelismthroughouttheap-
plication. Userinteractionismaintainedat ahigherlevel,typically this is minimal andrelates
onlyto thoseareasof anapplicationcodewhere,for example,thecomplexnatureof thecode

preventedaccurateanalysis,.

3.2. "Best Manual Practice" Parallelization Strategies

To achieve the specified goals, work has focussed on specific, but widely used, parallel pro-

gramming techniques. The first two techniques considered are single block, structured mesh

(regular) application codes, such as Control Volume based codes, and unstructured mesh (irregu-

lar) application codes, such as Finite Element codes. Figure 1a and Figure 1b show structured

and unstructured meshes and the related data partitioning techniques. In both cases, the core

cells/elements are owned by the processors to which they are allocated with the overlap (also

known as halo) cells being owned by other processors. The basic "owner compute" strategy is

then used so that each processor performs computations relating to owned data only. The over-

lap data is updated by messages sent from the owning processor to the using processor.

p. 12 of 37

0000DO00
rlOOrl

Figure I. a) Structured Mesh Decomposition b) Unstructured Mesh Decomposition.

Both techniques are implemented to allow runtime determination of data partition details after

problem details and processor topology have been specified. Although the techniques have many

similarities, their implementation into application codes requires different approaches.

3.2.1. Structured Mesh Parallelizations

The runtime calculation of processor limits for the data partition is a simple process for struc-

tured mesh codes. Basically, it involves dividing the number of cells in each partitioned mesh di-

mension by the number of processors the user has requested for that dimension. To allow this

flexibility, partition ranges are represented by low and high range variables on each processor

(CAP_L and CAP H respectively) indicating the range of owned data on that processor. The re-

mainder of the parallelization process then consists off

• adding execution control masks to determine if a processor should execute an instance of a

statement,

• adjustment to loop limits to only cover the owned range of data, and

• adding communications to update overlap areas.

An execution control mask for such a parallelization is used to determine if the computation re-

lates to the assignment of data owned on this processor, i.e.

IF (I.c_e.CAP L.and.l.le. CAP H) A(I) =

Similarly, alterations to loop limits involves the use of the partition range variables, also taking

into account the original loop limits to ensure that only data processed in the original loop is

processed in the parallel version:

DO S = MAX(2,CAP L) , MIN(NI-I,CAP H)

The communications used to update the overlap areas use the CAPLib routine CAP_EXCHANGE

so that all processors can update one of their overlap areas in a single call:

CALL CAP_EXCHANGE (A (CAP_H+1) ,A (CAP_L) ,I, CAP_TYPE, CAP_RIGHT)

p. 13 of 37

where CAP TYPE indicates the data type involved in the communication and CAP RIGHT indi-

cates the processor to be communicated with (in this case, each processor's 'RIGHT' neighbor).

Reducing the memory requirement so that each processor holds only its core and overlap areas

can then be implemented by adjusting declarations and any necessary array references [46].

3.2.2. Unstructured Mesh Parallelizations

The runtime calculation of the data partition for unstructured meshes is more complex. A graph

partitioning tool such as JOSTLE [47] or MeTis [48] is used to process a graph representing the

topology of an unstructured mesh and return a processor ownership array (CAP_P), relating each

mesh element to a processor. The processor ownership array is then used to enforce execution

control masks, taking the form:

IF (CAP P(1).eq. CAP PROCNUM) A(I) =

where CAP PROCNUM is a unique number identifying the executing processor. Updating over-

lapped elements on each processor is performed using a communication that collects data to be

sent before transmission with all received data being unpacked. These communications follow

pre-described communication sets that are calculated based upon the mesh interconnections. A

typical manual parallelization would use an unstructured mesh library (for example CAPLib [45],

or PARTI [49]) requiring a "standard" data structure that will very often be different to that used

in the application. To overcome this, manually introduced loops are typically used to build a

runtime graph of the mesh in the data structure required by the library routines, where these

loops are in-effect "inspector" loops.

The use of local mesh renumbering reduces memory requirements by only storing core and over-

lap data. It also has the side effect of making many loops run over the locally owned set [50].

This is achieved by changing loop limits to be based upon the number of locally owned elements,

enabling any execution control masks within those loops to be removed. The resulting code can

then be made to resemble the original serial code very closely.

3.2.3. Abstraction of the Manual Parallelization Techniques

The automation of these techniques can be broken down into a series of stages where each stage

is relevant to both structured and unstructured mesh codes. These stages are:

• dependence analysis;

• determination of the arrays to be partitioned and the components to be decomposed;

• addition of execution control masks;

• identification and addition of communication statements; and

• adjustments to implement memory reduction.

p. 14 of 37

Although the details of many of these stages differ between the two types of code, the user proc-

ess and associated browsers in CAPTools are the same for both. Since the details of the parti,,

tions are only determined at runtime, the automated parallelization processes is carried out based

on symbolic variables for both the partition ranges in structured mesh codes (CAP_L and CAP_H)

and also for the processor ownership array in unstructured mesh codes (CAp_P).

The organization of CAPTools components is shown in Figure 2. There are six main compo-

an inter-procedural dependence analysis module capable of incorporating user knowledge;

a "self-propagating" data partitioning module driven via user guidance as well as data de-

pendencies;

3. an execution control mask generation and optimization module for the user to manage and

fine tune parallel processing of individual partitions;

4. a code generator supporting multiple parallel programming paradigms on various multi-

processing platform,,:;

5. a program transformation/restructuring facility for source code clean up and optimization;

and

6. a set of browsers through which the user may guide the parallelization process based on

feedback of the intermediate results at each stage.

The first four components represent the aforementioned stages in which a code is parallelized.

Iterative cycles are present at each stage before the final parallel version is produced. In the

analysis stage, a basic dependence analysis (involving standard techniques found in "parallelizing

compilers") may first be applied to produce an intermediate result for the user. At this point, the

user may supply some information and opt to carry out a more extensive and time-consuming

analysis to yield a more accurate representation of the dependencies within the code. The code

partitioning stage is also iterative; involving refinement of the initial data partition strategy;

changing the criteria for data partition inheritance; and performing incremental partitioning. The

code generation stage will almost certainly undergo some iterative cycle to refine or optimize the

placement of execution control masks [51] on statements and the generation of communication

calls. Code optimization forms an obvious step in the successful parallelization of a code. Some

optimizations are currently identified and performed by CAPTools, others are currently carried

out by hand with (semi-) automation within CAPTools under development.

nents:

1.

2.

p. 15 of 37

I Knowledge Domain Mask Loop]
about input decomposi- Ioptlm_zatton, rou- I

tion editing tine copy, etc,]
ode

BrowseffEditot Browser/Editor Browser/Editor

restructurin

Int:r- Execution Communica- Code

procedural Data tions genera- generation

dependency partitionin_ generation tion & optimi
zation Setup for

rrui-

dimensional

-"-1
i_

1

User knowledge Control flow Dependencies Partition Execution [

Parse tree Communications (scalar, array, control) definition control masks /
Figure 2. Overview of Computer Aided Parallelization Tools

3.3. Dependence Analysis Techniques Required to Achieve the Design Criteria

The criteria set for CAPTools placews a considerable burden on the dependence analysis phase

of the parallelization process. All the following phases in the parallelization are fundamentally

dependent on the accuracy of the dependence graph, where inefficient execution control, unneces-

sary communications and communications generated within loop nests are all potential conse-

quences of deficiencies in this analysis. The criteria of efficient parallel code forces the computa-

tional effort required in dependence analysis to be considerable for complex codes. This per-

ceived negative aspect of the tools, however, can be justified in the context of a parallelizing tool

where, unlike in a compiler, it is "user time" and not "compute time" that is crucial. Since the

user's task is considerably simplified by an accurate dependence analysis, the running of, for ex-

ample, an overnight dependence analysis is quite justifiable if the parallelization can then be

completed in a short space of time thereafter.

The combination of a number of traditional techniques [52, 53] with a set of new techniques

aimed at the accurate anabsis of complex real world applications, provides a powerful depend-

ence analysis. The key features of this analysis are that it is symbolic, interprocedural and value-

based to accurately capture; data flow throughout the application. The symbolic processing in-

volves a range of symbolic algebra techniques including GCD [53], SIDA [54], the symbolic

p. 16 of 37

Omega test (SOmega [55]) with substitution of"symbolic constraint sets" through conditional

branches [54]. The interprocedural array analysis uses a relatively cheap array-section analysis

[56] pre-test followed, if necessary, by a more accurate atomic-based test [54, 57] where all con-

trol information is also incorporated to enhance the quality of the solution. The value based na-

ture of the analysis is achieved using covering set analysis [54] to determine if any data can flow

between the assignment and usage of a dependence without being overwritten in intermediate as-

signments. The following examples, taken from real application codes, indicate the complexity of

code encountered and illustrate how these techniques provide an accurate dependence analysis.

3.3.1. The Checkerboard Technique

The checkerboard technique is commonly used to allow an implicit solution algorithm over a

mesh to be performed in a few passes where all computations are independent within each pass

(i.e. no recurrences). Although typically used to allow the exploitation of vectorization and par-

allelism, the), represent a challenge to dependence analysis in the proving of the parallelism

within each pass. A simple example of a checkerboard code fragment is shown in Figure 3.

DO IC = 0, I

DO J = I,NJ NO

ISTART = MOD(J+IC,2)

DO I=ISTART+I,NI, 2 "'"

A(I,J) = C.25" (A(I,J-I)+

& A (I, J+l) +A (I-l, J) +A (I+l, J)) 2

ENDDO

ENDDO

END[X)

1 2 ... NI

Figure 3. Checkerboard update scheme and pictorial example.

This is a two-color update scheme where the loop variable IC indicates which pass is being exe-

cuted. When IC is zero, the J and I loops are parallel and the white cells in the diagram are up-

dated. To prove this independence in dependence analysis requires symbolic algebra manipula-

tion and a functional description of the intrinsic function used along with the accurate representa-

tion of integer divisions. The following is a brief description of the operation of these tests:

Test for dependence between iterations of J loop for the assignment k (I, J) to a later usage in

the reference k (I, J-1) begins with a GCD [53] test. Considering index 1 adds the constraint

Jn.w-1 = Jold as enforced by the necessary equality of index 2 (where Jn.. is the value of J in

a later iteration than Jold). The equation for equality of index 1 (where all DO loops have been

normalized to run from 1 in steps of 1 in the analysis) is:

2 Inew + ISTARTne w - 1 = 2 Iold +ISTARTold --1

p. 17 of 37

t

Substitution of variable ISTART with the MOD function gives:

2 1new+_40 D (Jnew + IC, 2) = 21 old+MO D (Jold + IC, 2)

Applying the functional definition of MOD intrinsic function gives:

2Inew+Jnew+IC-2 (Jn..+IC)/2 = 2Iold+Jold+IC-2 (Jold+IC)/2

Now the integer divisions can be removed by multiplying by denominators, introducing new vari-

ables to account for round-off. Since these are divisions by 2, the round-off must be either 0 or 1.

Additionally, since we know that Jne_- 1 = Jola, then one numerator must be odd and the

other even in the above equation. This allows the use of a single variable to represent the round-

off in both cases, i.e. o_ and (1-ct). Multiplying by the denominators and incorporating these

round-off variables then gives:

4 Inew+2Jnew+2 IC-L_Jnew-2 IC+2_ = 4Iold+2Jold+2 IC-2Jold-2 IC+2 (l-(X)

which can be symbolically 'dmplifled to:

4Inew - 4Ioi_ +4(X = 2

Since all variables are integers, the GCD test proves that this equation cannot have a solution and

therefore no dependence is set.

3.3.2. Eliminating False Dependencies using Covering Set Calculation

One of the many reasons tor carrying out a dependence analysis is to determine what loops (if

any) can be executed in parallel. Generally, the more of the compute intensive loops that can ex-

ploit parallel execution, the better the parallel performance is likely to be. The only dependencies

that fundamentally serialize a loop are data-flow dependencies where some values can pass from

assignment to usage. One common case when such dependencies appear to exist is when work-

space arrays are re-assigned within an application code. A simple example in Figure 4 shows that

the J loop should be parallel. In order to prove this, however, it must be proven that the values

of array A used in $3 cannot emanate from previous iterations of the J loop. In this case, that re-

quires that it is proved that all values used in $3 are assigned during the same iteration of the J

loop. This is achieved through the use of covering set analysis to compare the set of intermediate

assignments of array A against the data used and assigned in a potential loop carried dependence

from S 1 or S 2 to S3 [54].

In Figure 4, the values of A are assigned in the routine UPDATE at statements Ss, S6, S7 and S8.

To apply the covering set test, the full set of intermediate assignments and the range of data they

access along with their control information are gathered to form a set which potentially covers the

dependence being tested. This set is then negated to represent the set of data not overwritten in

intermediate assignments. In this case, the covering set consists of the union of the assignments

in statements $5, $6, $7 and S8 incorporating the relevant control statements St, S2 and S4. This

covering set is then substituted using the definite callers for each assignment with array B being

p. 18 of 37

substituted with array A. This set is then tested against the assignment and usage of the loop car-

ried dependence to prove that all data items in that set are overwritten and therefore the depend-

ence can be eliminated. Consequently, the J loop can be executed in parallel.

130 J=l, NJ

IF (J.LE.JMIX) THEN

$I CALL UPDATE (A (I, J) ,NI, .TRUE.)

ENDIF

$2 IF (J.GT.JMIX) THEN

CALL UPDATE(A(I,J),NI, .FALSE.)

ENDIF

DO I=l, NI

... = A(I,J)

ENDDO

ENDDO

SUBROUTINE UPDATE(B,M, BLAY)

REAL B (*)

LOGICAL BLAY

$4 IF (BLAY) THEN

Ss B(1)=.

S_ B(M)=.

DO I=2, M-I

S7 B(I)=.

ENDDO

ELSE

DO I=I,M

S8 B(I)=.

ENDDO

ENDIF

Figure 4. Example of covering dependence sets.

3.3.3. Accurate Analysis of Linearized Array Accesses

A popular feature of scienti tic mesh-based codes is changing the dimension of an array when

passing from one routine into another. It is used for a variety of reasons including memory man-

agement in caller routines, perceived optimization in computationally expensive routines etc.

These features, however, mean that many dependence tests fail to correctly detect the existence

or non-existence of data dependencies that are defined using these linearized expressions. Figure 5

shows a simple extract from a real application code where all referencing is linearized, and as

such, commonly used dependence tests such as the Banerjee Inequality test [58] and the standard

Omega test [59] fail to accurately detect the data dependencies present.

DO ITER=I,TOTALITER

82

Sl

DO J=2, NJ-I

DO I=2, NI-I

DO K=2, NK-I

IJK=I+JOFFSET (J) +KOFFSET (K)

IJKN=IJK+NI

IJKS=IJK-NI

IJKB=IJK-]

IJKF=IJK+]

X (K) =AE (IJK)* XO (K+I) +AW (IJK)*X (K-I) +AN (IJK)* F (IJKN)

& AS (IJK)* F (IJKS) +AB (IJK)* F (IJKB) +AF (IJK)* F (IJKF)

ENDDO

DO K=2, NK-I

IJK=I+JOFFSET (J) +KOFFSET (K)

F (IJK) :A(K)*X (K)

IF(F(IJK) LT.0.0)THEN

p. 19 of 37

S3 F(IJK) =0.0

ENDIF

ENDDO

ENDDO

ENDDO

ENDDO

Figure 5. Example of a one-dimensional array as

used to represent a three-dimensional problem.

The integer arrays are set up earlier in the application code to indicate the start of lines and

planes of the mesh, i.e.:

JOFFSET(J) = J*NI-NI KOFFSET(K):K*NI*NJ-NI*NJ

Considering the array reference F (IJKS) in 82, forward substitution (also substituting for the

integer arrays) extract IJKS to be the symbolic expression:

IJKS = I+J*NI-2*NI+K*NI*NJ-NI*NJ

indicating that the one-dimensional reference F (IJKS) is equivalent to a reference in three-

dimensions off (I, J-1 ,K) for a declaration ofF (NF,NI ,NJ). Range-based tests, such as the

Banerjee Inequality [52], fail in such cases since the loop ordering causes interlaced memory loca-

tions to be referenced (a loop ordering with K as the outer loop and I as the inner loop could be

accurately handled by such a test). Another difficulty in achieving an accurate analysis involving

these types of expressions is their symbolic non-linear nature.

To provide an accurate dependence analysis for non-linear, symbolic expressions, CAPTools

uses the Symbolic Omega test (SOmega) [55], an extension to the standard Omega dependence

test [59]. The two main phases of the SOmega test involve the Fourier-Motzkin elimination

(FME) of variables from equation sets and the normalization of those equations to reduce the or-

der of the contained terms. The SOmega algorithm is based on the use of symbolic factorization

to accurately reduce non-linear terms, allowing continued use of the FME.

In the above example, the only correct true dependencies carried by the J loop are defined from

the statement assignment in S_ to the highlighted usage in statement $2 and from the assignment in

statement $3 to the same usage in statement $2, both of which are carried by the array F. Be-

tween iterations of the J loop each successive reference is a distance of NJ apart, therefore, only

indices referenced in this v,ay cause a dependence relation within the J loop.

3.3.4. User Interaction in Dependence Analysis

The result of a dependence analysis on industrial application codes will often require tuning and

knowledge from the user to optimize the dependence graph. This is due to the analysis being un-

able to resolve dependencies because additional information was required about variables in the

code. Knowledge from the user will typically be range information for integer variables whose

p.20of37

valueisdeterminedfrom run-timedata.Usingthedependence graph browser, these dependen-

cies can often be eliminated if the user can answer the questions posed by the analysis during

testing of the dependence. Figure 6 shows an example of the dependence graph browser dis-

playing a graph from the ARC3D code and the why dependence window displaying information

on a selected dependence. The dependence can be eliminated if the user can answer any of the

questions provided by CAPTools. Furthermore, this knowledge can be used to resolve other un-

certain dependencies via an incremental analysis.

Figure 6. DependenceGraph Browser

3.4. Data Partitioning Techniques and Automatic Inheritance

For large application codes, the selection of the arrays to be partitioned across the processor to-

pology can be a very significant task. It can involve a large number of arrays in every routine

where the mapping of these arrays between routines is not always straightforward. Since the

parallelizations are based upon domain decomposition, the partition determination should take a

global view of the code. To make the parallelization tools accessible to the scientific and indus-

trial communities, this process must be simplified and automated into as painless a task as possi-

ble.

p. 21 of 37

3.4.1. Automatic Data Partition Inheritance

A basic idea of how the data should be distributed, given the applications and paralMization

strategies considered here, is fairly simple to obtain. The automatic partition inheritance com-

mences from a user selection of one array in one routine and one component of that array (for

example, an index). From that selection, arrays related within single statements and transitively

through dependencies to previously partitioned arrays can inherit the partition. Both positive

and negative partition implications are inferred where an array should or should not be parti-

tioned due to the relationships with other arrays. This process also proceeds interprocedurally

so that a comprehensive array partition can be constructed throughout an application code [51].

3.4.2. Catering for Interprocedural Dimension Change

Interprocedural dimension change and the use of linearized array accesses as mentioned in section

3.3.3 also have implications when defining the data partitioning as part of the parallelization of a

code. During the data partitioning process, arrays that are dimension-mapped across routines are

accurately handled within the algorithm. This is achieved by internally specifying the data parti-

tions in terms of symbolic MODWrJJS and DIVISOR expressions. For the code in Figure 7, the

array A is first initialized as a one-dimensional array in routine T:I:I_STEP at $1. Then, the array

A is aliased to array B when used in routine UPDATE as a four-dimensional array.

Sl

S2

SUBROUTINE TIMESTEP (A, NI, NJ, NK, NL)

REAL A(NI*NJ*NK*NL)

DO I=l, NI

DO J=l, NJ

DO K=I, NK

DO L=I, NL

A(I+ (J- [)*NI+ (K-I)*NI* NJ+

& (L-II*NI*NJ*NK) = ...

ENDDO

CALL UPDATE(A, NI,NJ,NK, NL)

DO I=l, NI* NJ* NK* NL

A(I) =

ENDDO

END

SUBROUTINE UPDATE(B,NI,NJ, NK, NL)

REAL B (NI, NJ, NK, NL)

DO L=I, NL

DO K=I, NK

DO J=l, NJ

DO I=l, NI

•.. =B (I, J, K, L)

ENDDO

ENDDO

ENDDO

ENDDO

END

Figure 7. Simple Example of Interprocedural Dimension Mapping.

Using the initial partition described in Section 3.4.1, the user selects to partition array _a in rou-

tine UPDATE in the third index (i.e. K). The equivalent definition of the partition for array A in

routine T:I:NlgSTr..P is represented in terms of symbolic MODULUS and D'rv'rsoR expressions

given by:

Modulus expression: NI* NJ* NK

Division expression: Nr* NJ

• p.22of 37

The partitioned component for array A can then be extracted using symbolic factorization. Con-

sider the reference to array A at Sl:

A(I+ (J-I)*NI+ (K-I)* NI* NJ+ (L-I)* NI* NJ* NK)

Firstly, adjusting the expression to be relative to zero and applying the Modulus expression to

the one-dimensional index expression removes terms that have a higher order than the partitioned

component:

MOD(I+(J-I)*NI+(K-I)*N[*NJ+(L-I)*NI*NJ*NK-I , NI*NJ*NK) = I+(J-I)*NI+(K-I)*NI*NJ-I

This is then followed by the application of the integer division expression to remove lower order

terms:

DIV(I+(J-I)*NI+(K-I)*NI*NJ-I , NI*NJ) = K-I

indicating a partition based upon the expression K-1.

In the case of the reference to array A in statement $2, since the reference consists of a single vari-

able, no partitioned component can be extracted. The code generation will then use loop unrolling

to separate the partitioned component or, if that is not possible, use the MODULUS and DIVI-

SOR expressions explicitly in the output code.

3.4.3. User Interaction in Data Partitioning

The goal of the data partitioning algorithm is to identify as many arrays as possible that are suit-

able for distribution using the SPMD paradigm. On completion of the data partitioning stage, the

user can inspect the data partitioning defined for each array and if necessary, the user can enforce

a coherent partitioning alignment for different arrays. It is also important for the user to inspect

any arrays that were not partitioned. Although it may not be possible for the user to gauge the

impact of arrays that are not partitioned on the quality of the generated parallel code at this stage,

the user can inspect (through the Partition Browser) any reasons arrays were not partitioned,

enabling a more informed decision to be made.

3.5. Parallel Execution Control Determination

The exploitation of parallelism from the sequential code is achieved during execution control mask

addition. A maximum coverage of masks is essential if high efficiency is to be obtained from the

resultant parallel code since any unmasked statements must be executed on every processor. The

basic algorithm for the addition of execution control masks firstly uses the "owner computes"

rule for assignments to partitioned arrays. This is followed by the addition of masks to state-

ments related to previously masked statements through dependence relations and also to state-

ments that use partitioned data [51]. This allows, for example, parallelism to be exploited in

computations that involve arrays not yet partitioned. The determination of which masks to use

on a statement when several options exist is based upon the loop nesting depth of the dependen-

cies that inferred those masks, where the most deeply nested should be honored to avoid the re-

p. 23 of 37

quirement of deeply nested communications. A key to the success of the execution control

masking algorithm is the effective application in an interprocedural environment. In particular, it

is very common for routine calls to be within a loop, where that loop should be executed in par-

allel. Figure 8 shows two cases within such a loop that employ different techniques.

S1

$2

DO J = I,NJ

FAC = FACTOR (J, NJ,VAL)

CALL UPDATE(A(I,J),FAC,NI)

ENDDO

83

FUNCTION FACTOR (I, N, VAL)

FACTOR= (VAL* I) /N

END

SUBROUTINE UPDATE (X, FAC, N)

DO I:I,N

X (I) =X (I) +FAC

ENDDO

Figure 8. lnterprocedural execution control mask addition example.

Array A is partitioned in index 2, also forcing array X in routine UPDATE to be partitioned. The

use of the modulus and divisor expressions to extract the partitioned component of the references

to array X return the partitioned component as 1 (the default FORTRAN declaration limit). The

execution control mask algorithm therefore places an owner computes mask based on the parti-

tioned component I on statement $3. The dependence relations then enforce that mask onto all

the executable statements in routine UPDATE. Since the entire routine is masked, this mask can

then be inherited by the call at $2. It will then be adjusted to take account of the indices of A

passed into routine UPDATE, creating a mask based on the expression J. The use of variable FAC

in $3 also infers a mask onto statement $1, where that mask is again adjusted to use the expression

J. The addition of a mask inherited via dependencies onto the statement Sl is legal since the call

to routine FACTOR contained in that statement accesses no partitioned arrays. Since both S_ and

$2 have been masked, and assuming that all other statements in the loop also have masks based on

J, it is possible to allow this mask to be inherited to the surrounding J loop, subsequently al-

lowing it to operate in parallel.

In the case where routine UPDATE contained several statements with differing masks, a mask

constructed from the union of the contained masks (i.e. combined using the . OR. operator) could

be inherited by the call at $2. The indices in array A in the call at SI requires code generation to

alter the values of the partition range variables on entry to routine UPDATE i.e.

CALL UPDATE (A(I, J), FAC, NI, CAP__L-J+I, CAP_H-J+1)

SUBROUTINE "JPDATE(X, FAC,N,CAP L, CAP H)

This allows the mask based on the expression I in routine UPDATE to be equivalent to a mask

based on the expression J in the caller routine.

p. 24 of 37

The CAPTools Mask Brouser window allows the user to investigate the result of the automatic

masking algorithm. The Mask Browser can show why a statement was masked and through a

context sensitive link to the WhyDependence window and Partition Browser window, allowing

the user to examine the dependencies and data partitions involved in the creation of that mask.

3.6. Communication Identification, Migration and Merger

The automatic generation of communication statements is essential for a parallelization tool

aimed at distributed memory architectures. To achieve the high parallel efficiency, the number of

communications generated in the parallel code must be minimal, avoiding duplicated or unneces-

sary communications. Additionally, placement of communications is crucial, in particular avoid-

ing the placement within loops whenever possible. In doing so, this would reduce the frequency

of communication calls, which in turn reduces the cost of the significant communication startup

latency currently inherent with all parallel systems.

The essential features of the; communication calculation algorithm in CAPTools include the abil-

ity to perform communication splitting, communication migration and communication merger.

3.6.1. Communication Splitting

Much effort is invested in attempting to move communication requests outside of the loop nest

they originated from. As an illustration we consider a code extract that describes the partial use of

the upwind differencing scheme in a computational mechanics code (Figure 9).

83

82

$1

DO J=2, NJ-I

DO I=2, NI-I

NSUP = IFIX(SIGN(I.0,CONVECW)

• • •

KLOC=J-NSUP

JLOC=KLOC- (I+NSUP)/2

• • •

USOURCE (I-l, J) =USOURCE (I-l, J) -COEF* UVEL (I, JLOC)

ENDDO

ENDDO

Figure 9. Example of Upwind Differencing

Taken from a Computational Mechanics Code.

A communication request is initially made on statement SI because the array element

WCEL (I, d'r_.,OC) may be owned by another processor. The migration of the communication

request for UVEL is bariered by the assignment of the index d'LOC. CAPTools uses logical

substitution to determine the assignment(s) of variables, therefore, the assignment of d'LOC ($2) is

dependent on the variable NSUP ($3). In general, the assignment of NSUP is a barrier to the

p.25of37

communicationrequestfrom statement$1leavingthecommunicationof singlevaluesof the LrVEr.

array within the "r and ,7 loops. In this case however, CAPTools can further resolve the intrinsic

SxG'lq function and therefore the knowledge is added that lqSrJP is assigned to be -1 or +1 (and

hence ffr_.,OCcan only ever be J-2 or J+l). The single request is then replaced by two requests for

the array values of UVEL (I, J-2) and UVEL (I, J+l) and the assignment S 3 is no longer a

barrier to the commuication. Consequently, these requests are migrated outside both the I and J

loops allowing further migration through the code.

3.6.2. Interprocedural Migration of Communications

As well as moving communication requests outside loop nests it is essential to be able to migrate

the requests out from one routine and into another. This can also greatly reduce the number of

communications generated. The communication requests are migrated through the application

code traversing the pre-dominator tree of the control flow graph [58], until they are prevented

from moving up any further by a barrier such as an assignment to the data that is to be communi-

cated.

Additionally, as real applications usually include a very large number of routines, interprocedural

migration of these communication requests is essential. An obvious reason for this is to avoid of

repeated communication in different routines when a single communication prior to both routines

would be more efficient, q-he migration of such requests to the same point in the application

provides the possibility of them being merged into a single communication. Consider the com-

munication in the CAPTools communications browser in Figure 10.

p.26of37

Figure 10. Communications browser highlighting

interprocedural communication migration.

The browser shows a highlighted exchange communication of array DEN (density) in the main

program of the application. For this communication, there are 16 statements that requested (and

would therefore use) the received data values (as shown in the lower list). These statements ap-

pear in seven different routines, clearly illustrating the importance of the interprocedural aspect

of the migration and merger algorithms. Without such migration, at least six extra communica-

tions would be required, at least one in each of the original routines.

For structured mesh codes a single communication request is issued and migrated through the

code, eventually barriered, for example, by the assignment of the data to be communicated. The

generation of communications for an unstructured mesh code uses the inspector-executor

approach [60] so a separate request for an inspector loop and a communication (executor) are

issued. The inspector request is needed for the construction of the list of all items that are to be

communicated. It is constructed from code sections from any number of routines as required to

evaluate the set of array indices required in the requesting computation. The code to be included

in the inspector loop is determined to allow migration of inspector loops out of loop nests, where

dependencies of any statement to be included in the inspector loop represent a barrier to

migration. The executor request, in a similar way to a structured mesh request, is for the

p.27of37

communicationstatement,indicating,for example,the array to becommunicated.Sinceonly the
executorrequestis barrieredby the assignmentof the data to be communicated,the inspector
loopwill migratepastthecommunication.

3.6.3. Communication Merging

Communication requests that have migrated to the same point in the code are then merged where

possible by comparing the data space they cover. This may involve either the deletion of a

communication request that is proven to be a subset of another request, or the merger of two re-

quests whose data spaces intersect. The unnecessary replication of communications can ad-

versely affect the quality of the generated code so it is essential to merge any communications

whenever possible and in doing so, generate code that does follow the best manual practice. The

example in Figure 10 shows that through the use of the interprocedural capability of CAPTools

the communication requests were migrated out from 7 different routines and were all barriered by

the same statement. Without the merger of these communications into a single communications

this would lead to an unnecessary number of communications being generated.

Merger of unstructured mesh communications uses the same technique as employed in structured

mesh parallelizations, except that the merger of the associated inspector loops is a pre-requisite

for the merger of communications. The inspector loop merger algorithm uses an induction proof

technique [61] to allow merger without consideration of textual and statement ordering

differences. The primary goal of this merger is the subsequent merger of communications,

however, a secondary pass of the algorithm is also made to eliminate duplicated inspector loops

in order to reduce runtime overheads in terms of execution time, memory requirements and

generated code volume.

3.7. Essential and Desirable User Interaction

On completion of the communication statements generated, the user can inspect these communi-

cations using the communications browser. For moderately complex codes, the user can examine

the number of communications generated on a routine by routine basis or even for the entire code

to get an initial impression of the quality of the parallelization of the code. For complex indus-

trial application codes however, this may not provide any intuitive feel. Due to the complexity

of the code, there may be a large number of communications generated, but these may only exe-

cute under certain conditions. For example, the setting up of complex boundary conditions may

lead to complex execution control masks which have in turn been inherited by the communication

(of data required to correctly compute the boundary data). Another possible scenario could begin

with the user inquiring why a communication was required. On examination of the execution con-

trol mask associated with tile communication (through the Mask Browser) it is discovered that

the data being used is not partitioned (through the Partition Browser). The user can inquire the

reasons why the data was not partitioned and can take one of a number of actions as a result of

p.28of 37

theinformationpresented.Forexample,theusercandecideto partitionthearray,or it may be

necessary to repartition from scratch selecting a different starting point, or the user may be satis-

fied with the partitioning and hence the side-effect of additional data communication.

The CAPTools browsers allow the user to explore and extract information about why certain ac-

tions were taken and this enables the user to make more informed decisions about the paralleliza-

tion.

"Value profiling" [46] can be used to calculate the number of times each communication call is

executed• Using this information, the user can focus on those communications which are called

most frequently, allowing fi_r manual optimizations or even revisiting an earlier stage in the par-

allelization process. CAPTools can also generate instrumented versions of the parallel code for

use with the NASA's Automated Instrumentation and Monitoring System, AIMS [62]. CAP-

Tools currently has a rudimentary ability to interact with AIMS' Trace Visualizer. This enables

the user to further investigate the quality of the parallel code through the performance traces gen-

erated. Selecting a communication in the trace file allows the user to explore (through the CAP-

Tools Communication Browser) the reasons why the communication was needed and may pro-

vide the user with some insight into how the communication may be optimized, if at all possible.

This might entail merging key communications, or the resolution of related uncertain dependen-

cies.

4. Examples and Evaluation

4.1. NAS Parallel Benchmarks

The performance of the code CAPTools produced was first compared against Portland Group's

HPF compiler (pgHPF), and the usage of compiler directives available with SGI's FORTAN77

compiler (SGI-pfa) using the NAS Parallel Benchmarks (NPB's) [63-65]. NPB consists of five

kernels and three simulated CFD applications derived from important classes of aerophysics ap-

plications. These five kernels mimic the computational core of five numerical methods used by

CFD applications. The simulated CFD applications reproduce much of the data movement and

computation found in full CFD codes. They were designed to compare the performance of par-

allel computers and are widely recognized as a standard indicator of computer performance. The

latest release, NPB2.3, contains an MPI-based message-passing version as well as a serial version

• For this case study, we used four of the NPB's: LU, SP, BT, and FT.

• LU uses symmetric successive over-relaxation (SSOR) to solve a block lower triangular-

block upper triangular system of equations resulting from an unfactored implicit finite-

difference discretization of the Navier-Stokes equations in 3D.

• SP uses an implicit algorithm to solve the 3D compressible Navier-Stokes equations. The

finite differences solution to the problem is based on a Beam-Warming approximate fac-

p.29of37

torizationthat decouplesthex, y andz dimensions.Theresultingsystemhasscalarpen-
tadiagonalbandsof linearequationsthataresolvedusingGaussianeliminationwithout
pivoting. Within thealgorithm,this solutionis performedby theADI (alternatingdirection
implicit) solverwhichsolvesthreesystemsof equationssequentiallyalongeachdimension.

• BT solves systems of equations resulting from approximately factored implicit finite-

difference discretization of the Navier-Stokes equations in three dimensions. Block-

tridiagonal systems o1"5x5 are solved in a similar fashion as SP.

• FT contains the computational kernel of a three-dimensional (3-D) Fast Fourier Transform

(FFT)-based spectral method. FT performs three one-dimensional (l-D) FFT's, one for

each dimension.

Two computing platforms were used in our experiments: an SGI Origin 2000 and an IBM SP2.

Figure 11 compares the performance of the three automated approaches (CAPTools, SGI-pfa and

PGHPF) to the performance of the hand coded benchmark (NPB-2.3) on the SGI Origin 2000. A

similar comparison is shown on Figure 12 for the IBM SP2.

6800-

_BT C

1000-

O

100.

3500-

1000-

100.

40.

u m n u u u m u

10

lass A

g

25

Number of
i u m i u ! i

1

J Class A

10 32 1

SP Class A

10 32

Figure 11. Performance Comparison for 4 Benchmarks

The following observations can be noted:

p.30of37

• CAPToolsgeneratedcodehavesimilarperformancefor theexecutionononenodeserial
codeindicatingthattheserialcodeiscloseto NPB 2.3. In mostcases,theyalsoscale
similarly to the hand-written NPB 2.3 code. CAPTools consistently produces code with

the best performance of the three automated approaches. However, the efficient paralleli-

zation of FT requires a data transpose, a feature not currently available on CAPTools.

• The HPF code has the worst performance for almost all cases. Its performance on a single

processor is still over twice as slow as the other approaches, signifying that part of the rea-

son for its relatively poor performance is the compiler. Furthermore, because it must use

data transposition for LU, BT and SP instead of parallel pipelined computation and com-

munication, the performance is worse than the other versions. (For more details see [17,

66])

• The Origin compiled code has good performance in some cases. The use of automated

tools 9 combined with tuning improves the performance of generated code. User interven-

tion includes: forcing parallelization of certain loops, loop-transformations and co-locating

certain computation with its data. (For more details see [68])

1000

i
I Class A

.... N,

4 10 25

22001 _00

1000- 0

i
100-
802 _

1 10 32

kss A

, NO.,OfNOt l

10 25

Figure 12. Execution time ofLU, BT, SP Class A on IBM SP-2

It should further be noted that while NPB 2.3 took man-months to be parallelized, CAPTools

took hours to generate the first parallel versions and days to tune. The directive-based versions

of NPB took days to be produced and HPF versions took much longer because the benchmarks

have to be re-written [17].

9 Power Fortran Accelerator (PFA) [67] can automatically insert parallelization directives in sequential code and
transform the loops to enhance their performance. Parallel Analyzer View (PAV) can annotate the results of de-
pendence analysis of PFA and present them graphically. Using these tools in conjunction with the MipsPro For-
tran77 compiler allow incremental tunining of the parallelized code.

p.31of 37

4.2. ARC3D

ARC3D [69] is a CFD application developed at NASA Ames Research Center. Parallelization of

ARC3D is significant as it forms the basis of an application being used in the design of aircraft

today. ARC3D solves Euler and Navier-Stokes equations in three dimensions using a single rec-

tilinear grid. Unlike the NAS benchmarks, ARC3D contains a turbulent model and a more realis-

tic boundary condition. The code was automatically parallelized using CAPTools in approxi-

mately 1 hour. In this case, the CAPTools routine duplication transformation was required to

allow efficient code to be generated in two routines. An essential feature of the generated code is

the use of software pipelines to handle the implicit nature of the solvers. This can carry a high

cost if the communication startup latency is high on the parallel platform and/or there is a rela-

tively low computational load within each stage of the pipeline. Table 2 shows the performance

of the generated parallel code using a 2-D block partition on the Cray T3D/E and IBM SP2.

IBM SP2 Cray T3D]l Cray T3E

Processors Speed Up Processors Speed Up Processors Speed Up

2(lx2)

4(2x2)

16(4x4)

1.99

3.79

8.15

4(2x2)

16(4×4)

32(4×8)

64(8x8)

3.68

11.79

19.87

31.22

4(2x2)

16(4x4)

32(4×8)

64(8×8)

3.78

12.31

21.09

33.52

Table 2. Results for ARC3D on a 64×64×64 grid on the

Cray T3D/E and IBM SP2 using 2-D partitioning.

IISGI Origin 2000 Cray T3E

Table 3.

Processors

4

16

25

32

36

CAPTools generated

Speedup Speedup

3.91 4.005

13.58 13.18

19.40 21.66

21.84 25.11

23.43 29.23

parallel code on SGI Origin and Cray T3E for ARC3D.

Due to the recognition of the CAPTools generated code by the user, it was possible to carry out

minor optimizations to the algorithm in the code, whereby the number of pipeline startup and

shutdown stages were reduced. These results are shown in Table 3 for the SGI Origin and the

Cray T3E.

p.32of37

4.3. Finite Element Stress/Strain Analysis Code

A code that uses finite element techniques to solve for displacement, stress and strain over a

number of time steps, in either a 2- or 3-D mesh was tested with CAPTools. As with many such

codes, the algorithm constructs stiffness matrices for each finite element in turn and incorporates

the components of these matrices into a full system matrix and boundary condition vector. The

resulting linear system is then solved by a Conjugate Gradient solution procedure to determine

displacements. These displacements are then used to evaluate stress and strain values throughout

the problem domain.

The code was parallelized in one day using CAPTools and the results are presented for a small

3000 element simulation taken from the NAFEMS benchmark set [70] (Figure 13). A loop-split

transformation was carried out using CAPTools for a loop in which the system matrix set up was

defined. This enabled a more efficient placement of a communication in the generated code. The

CAPTools generated code was re-compiled for the different platforms without any machine spe-

cific optimizations being made. These results show that the generated code provides high effi-

ciency even on this small mesh. The decrease in efficiency as the number of processor increase is

due to the small amount of computation that is independent of the communication that cannot

completely overlap the communication time.

Tran_t_

fTr_v

Tr_M

90 1 .in_ar _

I fJ
10. !/

0"" N_.nf

Figure 13. Results for stress code on different parallel platforms

4.4. UIFS - Unstructured Incompressible Flow and Stress

UIFS uses an unstructured mesh control volume discretization of the domain to solve for the in-

compressible Navier-Stokes equations. The code employs the SIMPLE solution procedure and

solves coupled equations fi_r momentum, continuity, heat, solidification, displacement, stress and

p.33of37

strain. Theflow componentsaresolvedusingclassicaliterativeschemesandthestresscomputa-
tionsaresolvedusingtheconjugategradientalgorithmwith diagonalpreconditioning.Examination
of thecodegeneratedby CAPToolsrevealsthatinspectorloopswereplacedappropriatelyfor
differentcalculationmodules.Forexample,inspectorloopsweregeneratedspecificallyfor the
flow computationsandanothersetgeneratedspecificallyfor thestresscomputations.This dis-
tinction wascorrectsincetheoverlapdatarequirementsfor thetwo computationswerenot the
same.In general,thecomputationrequiredin theflow modulearebasedon "fluid" cellsin the
overlapareas,andfor computationin thesolidmechanicsmodulesonly "solid" cellsarerequired
in theoverlapareas.Thetimetakento parallelizethiscodemanuallywasaboutsix monthsof
effort, whereasthetime takento parallelizethesamecodeusingCAPToolswasafew days. The
resultsfor theparallelexecutionof CAPToolsgeneratedcodefor athin plateproblemusing
30,000nodesareshownin Figure14. Although,thespeedup figuresarenot ashighasthat ob-
tainedfor afully optimizedmanualparallelization[50] theydo follow similar trends. TheCAP-
Toolsgeneratedcodehasa similarappearanceto themanuallygeneratedparallelcodebecausethe
strategiesusedby CAPToolswereextractedfromthebestmanualparallelization.As such,the
generatedcodecanbeoptimizedto achievethesameperformance.

16-

14'

12-

10-

8-

6"

.

2"

0 •

I I I IFlow

Stress

Both

1 I.... Linear"
/ _--1L

,

No. of

0 2 4 6 8 10 12 14 16

Figure 14. Performance of CAPTools Generated

Code for a Fluid-solid Interaction Application

5. Conclusions and Future Research

Parallel programming is a difficult process; there are many challenges to generating efficient par-

allel code. Currently, there are four major approaches besides hand coding for porting applica-

tions to parallel architectures. These include the use of parallelizing compilers, user supplied "di-

rectives", and semi-custom library. All these approaches are unattractive because they require

p.34of37

theuserto analyzetheentirecodeandre-writepartof it. Theuseof aparallelizationtoolkit has

twomajoradvantages:

1. Theuseroperatesat ahigherlevel; leavingthemundane,anderror-pronetasksto thetool;
and

2. A tool helpstheuselto quickly focusonavery smallportionof thecodecritical to paral-

lel performance.

In light of theseconsiderations,CAPToolswasconstructedspecificallyto caterfor theparalleli-
zationof large-scalescientitic applications,manyof which are"legacycodes"thathavebeende-
velopedandusedfor manyyears. CAPToolswasdesignedto ensureits

• applicability: acceptsawiderangeof FORTRANstandards;recognizescommonpro-

grammingpractices;

• performance: allowstheuserto controltheamountof resourcesdevotedto program
analysisto ensurethequalityof theresult;makesuseof userknowledgeto reduceanalysis
time; employsparallelizationalgorithmsmimicking bestmanualpractice, interactswith the
userat all stagesof tile parallelizationto ensurethequalityof theresultantcode;

• maintainability: generatesrecognizablecodefollowing well-understoodparallelization
techniques;enablesfurtherdevelopmentof parallelcodeif needed;supportsefficient in-
crementalanalysisshouldusermodifyasmallsectionof theapplication;and

• portability: generatesparallelcodebasedonwidely supportedstandardssuchasMPI and
PVM. An "OpenMP"versionis beingdevelopedat NASA.

Theperformanceof thegeneratedcodehasbeenevaluatedusingtheNAS ParallelBenchmarksas
well aslargerapplications.Resultsto-dateindicatethatCAPToolsgeneratedcodeperformsvery
closelyto message-passingcodewrittenby hand. Furthermore,thisperformanceismaintained
acrossat leastthreearchitectures(CrayT3E, IBM SP2andSGIOrigin 2000). Furthermore,par-
allelizationcanbeobtainedin hoursor days,asopposedto weeksor monthsfor manualparal-
lelization.

6. References

[i] "TheNationalPartnershipforAdvancedComputationalInfrastructure",NPACI,
http ://www. npaci, edu/Research

[2] "Partnerships for Advanced Computational Infrastructure", PACI, http://www.cise.nsfgov/acir/paci.html

[3] "CF90 Commands and Directives Reference Manual," Cray Research, Inc. SR-3901.10, 1993.

[4] "Forge Explorer User's Guide", Advanced Parallel Research, Inc.,
http ://www. qpsf edu. au/workshop/forge/forge, html

[5] "KAP/Pro Toolset for OpenMP", KAI, Inc., http://www.kai.com:80

[6] "MIPSpro(TM) Compilers", SGI, Inc., http://www.sgi.com/origin/products/compilers.html

[7] "OpenMP: A Proposed Standard API for Shared Memory Programming", http://www.openmp.org/

p. 35 of 37

[8] C.H. Koelbel, D. B. Loverman, R. Shreiber, J. G.L. Steele, and M. E. Zosel, The High Performance
FORTRAN Handbook: MIT Press, 1994.

[9] D. Gannon, P. Beckman, E. Johnson, T. Green, and M. Levine, "HPC++ and HPC++ Lib Toolkit," Indi-

ana University, Bloomington, IN 1997.

[10] S. Benkner, "Vienna FORTRAN 90- An Advanced Data Parallel Language," presented at International
Conference on Parallel Computing Technologies (PACT-95), St. Petersburg, Russia, 1995.

[11] V. Kumar, A. Grama, A. Gupta, and G. Karypis, "Introduction to parallel computing," : Benja-

min/Cummings, 1994, pp. 450-459.

[12] C. Cl6menqon, K. M. Decker, V. R. Deshpande, A. Endo, J. Fritscher, P. A. R. Lorenzo, N. Masuda, A.
M-uller, R. R-uhl, W. Sawyer, B. J. N. Wylie, and F. Zimmerman, "Tools-Supported HPF and MPI Par-
allelization of the NAS Parallel Benchmarks," Swiss Center for Scientific Computing, Manno, Switzerland

TR-96-02, March, 1996 1996.

[13] "CM Fortran Reference Manual," Thinking Machines Corporation,, Cambridge, MA Version 5.2, 1989.

[14] D. Gannon and e. al., "Implementing a parallel C++ runtime system for scalable parallel systems," presented

at Supercomputing '93, Portland, OR, 1993.

[15] G.C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. W. Tseng, and M. Wu, "The FOR-

TAN D Language Specification," CRPC, Rice University CRPC-TR90079, December, 1990 1990.

[16] A.S. Grimshaw, "Easy to use object-oriented parallel programming with Mentat," in IEEE Computer,

1993, pp. 39-51.

[17] M. Frumkin, H. Jin, and J. Yan, "HPF Implementation of NPB2.3," presented at ISCA 1lth International
Conference on Parallel and Distributed Computing Systems, Chicago, IL, 1998.

[18] S. Hiranandani, K. Kenncdy, and C. Tseng, "Preliminary Experiences with the Fortran D Compiler," pre-

sented at Supercomputing '93, Portland, OR, 1993.

[19] E. Ayguade, J. Garcia, and U. Kremer, "Tools and Techniques for Automatic Data Layout: A Case Study,"

Parallel Computing, 1998.

[20] U. Kremer, "Automatic Data Layout With Read-Only Replication and Memory Constraints," in Language

and Compilers for Parallel Computing, Lecture Notes in Computer Science. Berlin: Springer-Verlag,

1998.

[21] T. Gross, D. O'Hallaron, and J. Subhlok, "Task Parallelism in a High Performance Fortran Framework," in
IEEE Parallel & Distributed Technology, vol. 2, 1994, pp. 16-26.

[22] I.T. Foster and K. M. Chandy, "Fortran M: A Language for Modular Programming," Argonne National

Laboratory MCS-P327-0992, June, 1992 1992.

[23] B. Chapman, P. Mehrotra, J. V. Rosendale, and H. Zima, "A software architecture for multi-disciplinary

applications: Integrating task and data parallelism," ICASE, NASA Langley Research Center,, Hampton,

VA, 94-18, March 1994 1994.

[24] D.C. Cann, "The Optimizing SISAL Compiler: Version 12.0," Lawrence Livermore National Laboratory,,

Livermore, CA 94550 UCRLMA-! 10080, April, 1992 1992.

[25] Culler and e. al., "Parallel Programming in Split-C," presented at Supercomputing '93, Portland, OR, 1993.

[26] L.S. Blackford and e. al., "ScaLAPACK: a Portable Linear Algebra Library for Distributed Memory Com-

puters - Design Issues and Performance," presented at Supercomputing '96, Pittsburg, PA, 1996.

[27] S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, "Efficient Management of Parallelism in Object-
Oriented Numerical Software Libraries," in Modern Software Tools in Scientific Computing, E. Arge, A. M.

Bruaset, and H. P. Langtangen, Eds.: Birkhauser Press, 1997.

[28] R.F.V.d. Wijngaart, "Charon toolkit for parallel, implicit structured-grid computations: Literature survey

and conceptual design," NASA Ames Research Center, NAS Division, Moffett Field NAS-97-018, 1997.

[29] S. Hiranandani, K. Kennedy, C. Tseng, and S. Warren, "Design and implementation of the D editor," pre-
sented at Second SIAM workshop on environments and tools for parallel scientific computing, Townsend,

Tenessee, 1994.

p.36of37

[30] K.Kennedy,K.S.McKinley,andC.Tseng,"InteractiveparallelprogrammingusingtheParaScopeeditor,"
IEEE Trans on parallel and distributed systems, vol. 2, pp. 329-341, 1991.

[31] V.S. Adve, J. Mellor-Cnlmmey, M. Anderson, K. Kennedy, J.-C. Wang, and D. Reed, "An Integrated

Compilation and Performance Analysis Environment for Data Parallel Programs," presented at Supercomput-

ing '95, San Diego, CA, 1995.

[32] S. Benkner, S. Andel, R. Blasko, P. Brezany, A. Celic, B. M. Chapman, M. Egg, T. Fahringer, J. Hul-

man, Y. Hou, E. Kelc, E. Mehofer, H. Moritsch, M. Paul, K. Sanjari, V. Sipkova, B. Velkov, B. Wender,

and H. P. Zima, "Vienna FORTRAN Compilation System- Version 1.2- User's Guide," University of Vi-

enna, Vienna, Austria Oct. 1995 1995.

[33] S. Benkner, "HPF+: High Performance Fortran for Advanced Industrial Applications," presented at HPCN

'98, Amsterdam, Nederlands, 1998.

[34] "SUIF Explorer: A Programming Assistant for Parallel Machines", http://www-

suif.stanford, edu/suifconlTsuifconf2/

[35] R.P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S.-W.

Liao, C.-W. Tseng, M. W. Hall, M. Lam, and J. Hennessy, "SUIF: An Infrastructure for Research on Paral-

lelizing and Optimizing Compilers," Computer Systems Laboratory, Stanford University, Stanford, CA.

[36] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Lee, T. Lawrence, J. Hoeflinger, D. Padua, Y. Paek, P.

Petersen, L. Rauchwerger, P. Tu, and S. Weatherford, "Restructuring Programs for High-Speed Computers

with Polaris," presented at ICPP Workshop on Challenges for Parallel Processing, 1996.

[37] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi, "High Performance Fortran Compilation Techniques for

Parallelizing Scientific Codes," presented at Supercomputing '98, Orlando, FL, 1998.

[38] G. Robinson, "Parallel Computational Fluid Dynamics On Unstructured Meshes Using Algebraic Multi-

grid," presented at Parallel CFD '92, 1992.

[39] C. Bergman, P. Wahlund, and J. B. Vos, "Implementation of a 2D Multi Block Euler Solver on the Con-

nection Machine," presented at Parallel CFD '91, 1991.

[40] Ortner, G. Sieder, and D. Hanel, "Solution of the Navier-Stokes Equations on a Massively Parallel

Transputer System," presented at Parallel CFD '91, 1991.

[41] S.P. Johnson and M. Cross, "Mapping Structured Grid Three-Dimensional CFD Codes Onto Parallel Ar-

chitectures," Applied Mathematics Modelling, vol. 15, 199 i.

[42] M. Cross, S. P. Johnson, and P. Chow, "Mapping Enthalpy Based Solidification Algorithms onto Vector

and Parallel Architectures," Applied Mathematics Modelling, vol. 13, 1989.

[43] S.P. Johnson, F. All, and M. Cross, "Parallelising of the FAMCALC FEA Code," University of Green-
wich 1992 1992.

[44] C.S. lerotheou, C. Forsey, and U. Block, "Parallelisation of Novel 3D Hybrid Structured-Unstructured Grid

CFD Production Code," presented at HPCN '95, 1995.

[45] P. Leggett, "CAPTools Communications Library," University of Greenwich, London, London 98/IM/37,
1998.

[46] S.P. Johnson, P. F. Leggett, C. S. lerotheou, A. J. Marsh, E. W. Evans, and M. Cross, "Computer Aided
Parallelisation Tools (CAPTools) User Manual," University of Greenwich, London ! 996.

[47] C.H. Waishaw, M. Cross, and M. G. Everett, "A Localised Algorithm for Optimising Unstructured

Meshes," Int. ,1. of Supercomputing Applications, vol. 9, pp. 280-295, 1995.

[48] G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,"

Computer Science Department, University of Minnesota, Minneapolis, MN 55455 TR95-035, 1995 1995.

[49] R. Das and J. Saltz, "A Manual for PARTI runtime primitives - Revision 2," University of Maryland 1992
1992.

[50] K. McManus, "A Strategy For Mapping Unstructured Mesh Computational Mechanics Programs Onto Dis-
tributed Memory Parallel Architectures," in Department of Mathematics and Computing. London: Univer-

sity Of Greenwich, 1995

p.37of37

[51] S.P.Johnson,C.S.Ierotheou,andM.Cross,"AutomaticParallelCodeGenerationForMessagePassing
onDistributedMemorySystems,"Parallel Computing, vol. 22, pp. 227-258, 1996.

[52] U. Banerjee, Dependence Analysis For Supercomputing: Kluwer Academic Publishers, 1988.

[53] J.R. Allen and K. Kennedy, "Automatic Translation of Fortran Programs to Vector Form," ACM Trans.

Programming Languages Systems, vol. 9, pp. 491-542, 1987.

[54] S.P. Johnson, M. Cross, and M. Everett, "Exploitation of Symbolic Information in lnterprocedural De-

pendence Analysis," Parallel Computing, vol. 22, pp. 197-226, 1996.

[55] C.S. Ierotheou, S. P. Johnson, and M. Cross, "An Extension of the Standard Omega Test for the Paralleli-

sation of Computational Mechanics Codes Containing Arrays with Mapped Indices," 98/IM/34, 1998.

[56] P. Havlak and K. Kennedy, "An Implementation Of Interprocedural Bounded Regular Section Analysis,"
IEEE Transactions On Parallel And Distributed Systems, vol. 2, 1991.

[57] Z. Li and P.-C. Yew, "Program Parallelisation with Interprocedural Analysis," Journal Of Supercomputing,

vol. 2, pp. 225-244, 1988.

[58] S.P. Johnson, "Mapping Numerical Software Onto Distributed Memory Parallel Systems," in Department

of Computer Science and Mathematics. London: University of Greenwich, ! 992.

[59] W. Pugh, "The Omega test: a fast and practical integer programming algorithm for dependence analysis"," in

Communications of the ACM, 1992, pp. 102-114.

[60] J.H. Saltz, R. Mirchandaney, and K. Crowley, "Run-time Parallelization and Scheduling of Loops," IEEE

Tansactios on Computers, vol. 40, pp. 5, 1991.

[61] S.P. Johnson, K. McManus, C. S. ierotheou, P. F. Leggett, and M. Cross, "Inspector Loop Determination
To Reduce Communication Overheads in Unstructured Mesh Code Parallelisation.," University of Green-

wich, London PPRG-98-003, Jauary 1998 1998.

[62] J.C. Yan, S. R. Sarukkai. and P. Mehra, "Performance Measurement, Visualization and Modeling of Paral-
lel and Distributed Programs using the AIMS Toolkit," Software Practice and Experience, vol. 25, pp. 429-

461, 1995.

[63] D. Bailey, J. Barton, T. l,asinksi, and H. Simon, "The NAS Parallel Benchmarks," NASA Ames Research

Center, Moffett Field, CA RNR-91-002, January 1991.

[64] D. Bailey, T. Harris, W. Saphir, R. V. d. Wijngaart, A. Woo, and M. Yarrow, "The NAS Parallel Bench-

marks 2.0," NASA Ames Research Center, Moffett Field, CA RNR-95-020, 1995.

[65] "NAS-Parallei Benchmarks 2.3", NAS Division, NASA Ames Research Center,

http ://sc ienc e. nas. nasa. g ov/Softw are/N P B

[66] M. Frumkin, "HPF Implementation of LU NAS Parallel Benchmark," NASA Ames Research Center, Mof-

fett Field, CA In preparation, 1998 1998.

[67] "MIPSpro Fortran77 Programmer's Guide", Silicon Graphics, Inc.,

http://techpubs, sgi. com/library/dynaweb_bin/O640/birdnph-

dynaweb, cgi/dynaweb/SGl_Developer/MproF77_PG/@Generic Book View

[68] A. Waheed and J. Yan, "Parallelization of NAS Benchmarks for Shared Memory Multiprocessors," presented

at HPCN '98, Amsterdam, 1998.

[69] T.H. Pulliam, "Solution Methods In Computational Fluid Dynamics,",, Belgium, 1986," in Notes for
the von K6rmdn Institute For Fluid Dynamics Lecture Series. Rhode-St-Genese, Belgium, 1986.

[70] G.A.O. Davies, R. T. Fenner, and R. W. Lewis, "NAFEMS - "Background to benchmarks"," : Nafems,

1993.

